
A Family of Error Correcting Codes

Ashleigh Meyers
Point Loma Nazarene University

San Diego, CA

April 30, 2018

Abstract

Error correcting codes (ECC) protect the integrity of a message by detecting and correct-
ing errors that occur in digital communication channels. Cyclic codes are examples of ECC
of fixed length n. Cyclic codes of length n are constructed by factoring the polynomial xn +1.
In this paper we construct another family of codes by factoring the polynomial xn +xn−1 +1.
We give the generating and check matrices of these codes and their dimension.
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1 Introduction
In virtually all forms of digital communication, there is a transmission process that is required
to take the message from the sender and deliver it to the receiver. The original message to be
sent is usually composed of alphabetical characters, binary or decimal digits; however, before
it can be delivered to the receiver, it must be transformed by the encoder into a form that
the destination storage medium finds acceptable. For our purposes, we will be working with
codes composed of binary characters. As we will later see, we can detect and correct errors
in the transmitted message by using the structure and properties of certain polynomials. So
the first task is to associate a polynomial to a binary message. For example, the polynomial
1 · x3 + 1 · x2 + 0 · x + 1 will be associated to the binary message 1101.

Using the associated polynomial, we can perform operations and utilize certain properties
of polynomials in order to check if any errors were made and if so, correct the errors, thus
making the transmission more reliable. This is done by adding redundancies to the code be-
fore transmission. By repeating parts of the message, it is easier to deduce what the original
message was, in the case that errors occur.

For instance, suppose a message was sent as a response to a question either with Y for
yes or N for no. If the symbol is received incorrectly, the receiver will have no way of know-
ing if that was the intended response or if the answer was warped in transmission. To make
it possible to know if an error occurred, the sender could add an additional symbol to the
message - YY for yes and NN for no. Now if a symbol is warped in transmission, the receiver
will know since YN and NY are not possible codewords; however, with a code only having
one correct and one incorrect symbol, the receiver cannot know which one is correct. In order
for the receiver to be able to detect not only that an error occurred, but also be able to
discern where the error occurred, the original message will have to have an additional redun-
dancy with the possible codewords being either YYY or NNN. Then, if NNY is received, the
receiver can deduce that the original message was NNN because it is more likely that just
one error occurred.

2 Background
To even begin constructing a code in which error correction can occur, the underlying struc-
ture of the code must first be understood. In this section we will review the mathematical
background necessary for the construction and study of the codes.

2.1 Finite Rings and Finite Fields
Definition 1. A finite commutative ring R is a non-empty set endowed with two operation
addition and multiplication satisfying the following axioms:
Axiom 1 Addition is commutative: a + b = b + a for all a and b in R.
Axiom 2 Addition is associative: (a + b) + c = a + (b + c) for all a, b and c in R.
Axiom 3 Multiplication is commutative: a · b = b · a for all a and b in R

Axiom 4 Multiplication is associative: (a · b) · c = a · (b · a) for all a b and c in R

Axiom 5 Multiplication distributes over sum: a · (b + c) = a · b + a · c for all a, b and c in R.
Axiom 6 There is a unique element 0 in R such that a + 0 = 0 + a = a for all a in R
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Axiom 7 For each a in R there is a unique element x in R such that a + x = x + a = 0
Axiom 8 There is a unique element 1 6= 0 in R such that a · 1 = 1 · a = a for all a in R

Definition 2. An ideal I in a ring R is a subset of R such that
1. For all a and b in I, a + b is in I.
2. For all a in I and for all x is in R, x · a is in I.

Definition 3. A finite integral domain D is a finite ring satisfying the condition: if a and b
are elements of D and a · b = 0 then either a = 0 or b = 0.

Definition 4. A finite field with q elements Fq is ring such that each element of F that is
not equal to 0 has a multiplicative inverse.

The unique structure of finite fields allows the possibilities of finite patterns to be controlled
and therefore is useful in the construction of codes. In order to design codes in which errors
are easily detectable and correctable, the code alphabet is given the structure of a finite field
Fq.

Definition 5. Let Fq be a finite field. The ring of polynomials with coefficients in Fq and
denote by Fq[x] is the set

Fq[x] =
{

a0 + a1x + a2x2 + · · ·+ an−1xn−1 + anxn | a0, a1, . . . , an are in Fq and an 6= 0.
}

The operations are addition and multiplication of polynomials.

2.2 Constructions
There are a variety of types of fields to consider within code theory. We will use the binary
field F2.

Definition 6. As a set, the binary field is F2 = {0, 1}. Addition is defined as 0 + 0 = 0,
0 + 1 = 1 + 0 = 1, and 1 + 1 = 0. Multiplication is defined as 0 · 0 = 0, 0 · 1 = 1 · 0 = 0, and
1 · 1 = 1.

2.3 Building the Code
Definition 7. A binary word w of length n is a vector

w = [w0, w1, . . . , wn−1]

where each wi is in the binary field F2. That is, each wi is either 0 or 1.
The set of all the binary words of lenght n will be denoted by Fn

2 .
Binary words can be added coordinate by coordinate. Also, if a word is multiplied by 0 the
result is the zero word [0, 0, 0, . . . , 0] and if the word is multiplied by 1 then the result is the
same word.

Definition 8. A binary linear code C of length n is a set

C = {c1, c2, c3, . . . , cM}

such that the sum of any two code words is a code word in C. C is also called a block code
of length n.
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3 Introduction to Error-Correcting Codes
The main objective behind the process of Error-Correcting Codes is that the errors in a re-
ceived message are corrected.

The way in which a message is sent is in a block code C, which is a set of M codewords.

C = {c1, c2, ..., cM}

ci =
[
ci0, ci1, ci2, ..., ci(n−1)

]
3.1 Properties
The ability to perform computations on codewords is essential because useful codes can only
be constructed through certain algebraic methods. This concept was developed by Richard
Hamming in the 1950’s and his ideas and the codes he constructed set the foundation for
ECC and thus paved the way for the construction error correcting codes. No matter how
complex or different newly created error correcting codes may seem, they all boil down to the
same basic principles.

Definition 9. The weight w(x) of a word x ∈ Fn
2 is the number of 1’s in x.

Definition 10. Suppose we are given two words x and y ∈ Fn
2

x = x1x2...xn y = y1y2...yn

The Hamming distance d(x, y) is the number of i (1 ≤ i ≤ n) such that xi 6= yi. In other
words, it is the number of places where x and y differ. See page 95 in [1].

For example, let the following words be in F7
2 be

x = 1110101 y = 0110100 z = 1000111

The words x and y differ in the first and last bits only, therefore d(x, y) = 2. Similarly,
d(x, z) = 3 and d(y, z) = 5.

The distance of a code is a key component in many aspects, but is useful to know when
considering the efficiency of a code, especially in regards to how many errors can be detected
and corrected. To see how the distance affects this, it must first be understood how it is de-
termined whether a code has an error. After the encoding and transmission of the message,
the encoded message is decoded and received. With the message in the form of a matrix,
another matrix, known as the parity check matrix, is multiplied with the received message
and a product of 0 will indicate that no errors were made.

Definition 11. A matrix H over F2 with m rows and n columns is the parity check matrix
(or check matrix) for the linear code C if and only if for all x ∈ C Hx = 0.

While the parity check matrix is able to accomplish error detection, the structure of it
also determines how many errors are able to be corrected.

Theorem 12. Let H be a check matrix for a binary code C. Then the minimum distance
d(C) of C, is equal to the minimum number of linearly dependent columns of H.

Proof. See page 153 in [1].
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In other words, the minimum distance of a code C is the smallest Hamming distance
between distinct code words of C [4]. For instance, let B be a code containing the two words
from an earlier example - YYY and NNN. Then d(B) = 3 since the codewords vary in all
three positions. In this case, the code could detect if one or two errors had been made if the
received message contained at least one of each letter. However, only in the instance of one
error occurring can it be corrected successfully. If the received word was YYN, the conclusion
would be that the intended message was YYY. However, if the original message was NNN
and the received message was also YYN, then the conclusion that the original message was
YYY would be false. Due to the exceedingly low probability of two errors occurring in a code
of length three, this is a satisfactory method of correcting errors, but also has an opportunity
of the correction method to be improved.

With the minimum distance known, utilizing the triangle inequality will determine the maxi-
mum number of errors that can be accurately corrected. With the minimum distance of three
in the example above, it is clear by the triangle inequality that no more than one error could
be corrected. In regards to larger codes, a similar argument holds true. [4]

Theorem 13. The code C corrects all errors of weight up to t if and only if C has minimum
distance 2t + 1.

Proof. See page 18 in [4]

4 The Family of Cyclic Codes Associated to xn + 1
The way in which we are able to check codes for errors is by putting them in the format
of matrices. To do so, the structure of a cyclic code is used, which can be thought of in a
few ways. A cyclic code is created by taking a factor g(x) = g0 + g1 · x · · · + gn−k · xn−k of
the polynomial xn + 1 and creating a matrix associated to this polynomial. The first row
of the matrix corresponds to the coefficients of the polynomial, the next row of the matrix
corresponds to the coefficients of the polynomial multiplied by x, thus increasing each power
of x by one and shifting each coefficient of the polynomial over by one. In simpler terms,
the coefficients of the polynomial are shifted over one for each row, or the coefficients are
”cycling” through for k shifts construct the matrix. The cyclic shift of a word is obtained
by taking the last digit of the word and moving it to the beginning, with all other digits
moving one position to the right. See page 102 [5]

For example, 01011 is a cyclic shift of 10110. Other examples include...

codeword 10110 111000 0000 1011
shift 01011 011100 0000 1101

A code C is said to be a cyclic code if the cyclic shift of each codeword is also a codeword.
[5]

For a cyclic code, the polynomial xn + 1 is split into two factors g(x) and h(x) in which
one is used for the generating matrix g(x) and the other for the parity check matrix h(x).
Each one has this cyclic property to form each matrix and holds the property G ·H = 0.

Theorem 14. For the cyclic codes corresponding to the polynomial xn + 1, factor xn + 1 as
g(x) · h(x):

xn + 1 = g(x) · h(x) = (g0 + g1x + ... + gn−kxn−k) · (h0 + h1x + ... + hkxk)
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The polynomial g(x) is used to create the generating matrix G with k rows. To be able to
check if a received word is a codeword, a parity check matrix will need to be constructed. The
parity check matrix H will have n−k columns and must satisfy the equation G ·H = 0, where
0 is the zero matrix of size k × (n− k). The matrices G and H below satisfy this equation

G ·H =



g0 g1 g2 g3 . . . 0 0
0 g0 g1 g2 . . . 0 0
0 0 g0 g1 . . . 0 0
...

...
...

... . . . ...
...

0 0 g0 g1 . . . gn−k 0
0 0 0 g0 . . . gn−k−1 gn−k


·



hk 0 0 . . . 0 0
hk−1 hk 0 . . . 0 0
hk−2 hk−1 hk . . . 0 0

...
...

... . . . ...
...

h0 h1 h2 . . . hk−1 hk

0 h0 h1 . . . hk−2 hk−1
...

...
... . . . ...

...
0 0 0 . . . h0 h1
0 0 0 . . . 0 h0


= 0

Proof. See Theorem 4.2.7 in [3]

4.1 Properties
Let C be an [n, k] cyclic code over F2. If a codeword

c = [c0, c1, . . . , cn−1]

is in C we associate to c the poynomial

c(x) = c0 + c1x + c2x2 + · · ·+ cn−1xn−1

in F2[x].

Definition 15. A polynomial g(x) in F2[x] is a monic if the coefficient of the highest power
of x is 1.

Theorem 16. Let g(x) be the monic polynomial of lowest degree in C. Then the following
properties hold:

1. g(x) divides c(x) for every c ∈ C
2. g(x) divides xn + 1 in F2[x]
3. k = n− deg(g(x))

Part 1 of the above theorem says that every c(x) is a multple of the monic polynomial
g(x). The polynomial g(x) will be called the generating polynomial of C. Also, part 2 of
the theorem indicates that to understand and build cyclic codes, we must first understand
the divisors of xn + 1.

For the polynomials we are working with, the codes rely on on fields that have pd elements, or
more specifically, 2d elements. As we have seen, this is dependent upon the primitive element,
which in this case is the irreducible polynomial f(x). The generator polynomial is the
monic polynomial that divides the polynomial that generates the code and is unique; this is
then used to construct the generator matrix g(x).

For cyclic codes, n is taken to be odd (in the binary case) because the polynomial xn + 1 has
derivative n · xn−1 = xn−1 and since the greatest common divisor of the polynomial and its
derivative is equal to 1, that will ensure that the polynomial does not have common factors.
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5 The Family of Codes Associated to xn + xn−1 + 1
Theorem 17 (Main Theorem). For the family of codes corresponding to the polynomial
xn + xn−1 + 1, factor xn + xn−1 + 1 as g(x) · h(x):

xn + xn−1 + 1 = g(x) · h(x) = (g0 + g1x + ... + gn−kxn−k) · (h0 + h1x + ... + hkxk)

The polynomial g(x) is used to create the generator matrix G with k rows. To be able to check
if a received word is a codeword, a parity check matrix will need to be constructed. The parity
check matrix H will have n− k columns and must satisfy the equation G ·H = 0, where 0 is
the zero matrix of size k × (n− k). The matrices G and H below satisfy this equation

G ·H =



g0 g1 g2 g3 . . . 0 0
0 g0 g1 g2 . . . 0 0
0 0 g0 g1 . . . 0 0
...

...
...

... . . . ...
...

0 0 g0 g1 . . . gn−k 0
0 0 0 g0 . . . gn−k−1 gn−k


·



hk 0 0 . . . 0 1
hk−1 hk 0 . . . 0 0
hk−2 hk−1 hk . . . 0 0

...
...

... . . . ...
...

h0 h1 h2 . . . hk−1 hk

0 h0 h1 . . . hk−2 hk−1
...

...
... . . . ...

...
0 0 0 . . . h0 h1
0 0 0 . . . 0 h0


= 0

Proof. Let X be a matrix such that G ·H = X. Thus, X will have the form
x00 x01 x02 x03 . . . x0(n−k)
x10 x11 x12 x13 . . . x1(n−k)
x20 x21 x22 x23 . . . x2(n−k)

...
...

...
... . . . ...

xk0 xk1 xk2 xk3 . . . xk(n−k)


Therefore, the entries of X satisfy the equations below

g0hk + g1hk−1 + g2hk−2 + g3hk−3 + . . . 0 · 0 + 0 · 0 = x00

0 · hk + g0hk−1 + g1hk−2 + g2hk−3 + . . . 0 · 0 + 0 · 0 = x10

0 · hk + 0 · hk−1 + g0hk−2 + g2hk−3 + . . . 0 · 0 + 0 · 0 = x20

...

g0 · 1 + · · ·+ gn−k−1 · hk + gn−k · hk−1 · · ·+ 0 · h0 = x0(n−k)

We observe that gn−k+i = 0, for i ≥ 1. To ensure that G · H produces the 0 matrix, each
entry of X must equal 0.

When multiplying the two factors g(x) and h(x) of the polynomial xn + xn−1 + 1 we ob-
tain

g0h0 + (g0h1 + g1h0)x + · · ·+ (gn−k−1hk + gn−khk−1)xn−1 + (gn−khk)xn

Since g(x) · h(x) = xn + xn−1 + 1, it is clear that the only coefficients equal to 1 are those of
xn, xn−1 and 1. Thus, the corresponding coefficients of the expanded product must satisfy

g0h0 = 1, (gn−k−1hk + gn−khk−1) = 1, gn−khk = 1,
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and the remaining coefficients must be equal to zero.

Note that if gihj appears as a term of the coefficient of xr, then i + j = r. Looking at the
matrix multiplication that produces the entries of X, the only problematic entry is x0(n−k);
this will always be the case since each term gihj in the coefficient satisfies i + j = n− 1 and
thus x0(n−k) would equal 1. However, by always placing a 1 in the n− k position of the first
row of H, x0(n−k) will equal the coefficient of xn−1 plus g0 · 1, which equal to 1 + 1 = 0. With
this modification of the matrix H, all entries of X will be equal to zero. This proves that H
is a parity check matrix for the code generated by G.
Example 18. Consider codes associated with the polynomial x12 + x11 + 1. Since there
are three factors of this polynomial and only two factors can be considered here - one for
the generating matrix and one for the parity check matrix - there are 23 = 8 possible codes
associated with this polynomial with the factorization

x12 + x11 + 1 = (x3 + x + 1) · (x4 + x + 1) · (x5 + x4 + x3 + x2 + 1)
By taking different possibilities of combining these three factors into two, differently struc-
tured codes can be created, but will all be done in the same process, resulting in codes able
to detect if errors occurred in transmission.

1. Take the generating polynomial g(x) to be the product of the first two factors
g(x) = (x3 + x + 1) · (x4 + x + 1) = x7 + x5 + x3 + x2 + 1

and the check polynomial h(x) is taken to be the remaining factor
h(x) = x5 + x4 + x3 + x2 + 1

Let g(x) = g0 + g1x + g2x2 + · · ·+ g7x7 and h(x) = h0 + h1x + h2x2 + · · ·+ h5x5.
The generating matrix for the code is

G =


g0 g1 g2 g3 g4 g5 g6 g7 0 0 0 0
0 g0 g1 g2 g3 g4 g5 g6 g7 0 0 0
0 0 g0 g1 g2 g3 g4 g5 g6 g7 0 0
0 0 0 g0 g1 g2 g3 g4 g5 g6 g7 0
0 0 0 0 g0 g1 g2 g3 g4 g5 g6 g7

 =

=


1 0 1 1 0 1 0 1 0 0 0 0
0 1 0 1 1 0 1 0 1 0 0 0
0 0 1 0 1 1 0 1 0 1 0 0
0 0 0 1 0 1 1 0 1 0 1 0
0 0 0 0 1 0 1 1 0 1 0 1


and parity check matrix for the code is

H =



h5 0 0 0 0 0 1
h4 h5 0 0 0 0 0
h3 h4 h5 0 0 0 0
h2 h3 h4 h5 0 0 0
h1 h2 h3 h4 h5 0 0
h0 h1 h2 h3 h4 h5 0
0 h0 h1 h2 h3 h4 h5
0 0 h0 h1 h2 h3 h4
0 0 0 h0 h1 h2 h3
0 0 0 0 h0 h1 h2
0 0 0 0 0 h0 h1
0 0 0 0 0 0 h0



=



1 0 0 0 0 0 1
1 1 0 0 0 0 0
1 1 1 0 0 0 0
1 1 1 1 0 0 0
0 1 1 1 1 0 0
1 0 1 1 1 1 0
0 1 0 1 1 1 1
0 0 1 0 1 1 1
0 0 0 1 0 1 1
0 0 0 0 1 0 1
0 0 0 0 0 1 0
0 0 0 0 0 0 1


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To ensure that H is a parity check matrix for G, it must be the case that G ·H = 0.
According to Theorem 14, the only problematic position of X would be x0,12 had there
not been a 1 placed in the (n−k)th = 7th position of the first row of H. The calculation
of x0,12 is taken to be

g0 · 1 + g1 · 0 + g2 · 0 + g3 · 0 + g4 · 0 + g5 · 0 + g6h5 + g7h4 + g8h3 + g9h2 + g10h1 + g11h0

= g0 · 1 + g6h5 + g7h4 + g8h3 + g9h2 + g10h1 + g11h0

By the theorem, it is clear that g6h5 +g7h4 +g8h3 +g9h2 +g10h1 +g11h0 is the coefficient
of x11 and thus equal to 1. Since g0 = 1, x0,12 = 1 + 1 = 0 and therefore the required
property for this code is satisfied.

2. For another one of the eight possible codes for this polynomial, take g(x) to be

g(x) = x3 + x + 1

and h(x) to be the product of the remaining two factors

h(x) = (x4 + x + 1) · (x5 + x4 + x3 + x2 + 1) = x9 + x8 + x7 + x4 + x2 + x + 1

Let g(x) = g0 + g1x + g2x2 + g3x3 and h(x) = h0 + h1x + h2x2 + · · ·+ h9x9.
The generating matrix for the code is

G =



g0 g1 g2 g3 0 0 0 0 0 0 0 0
0 g0 g1 g2 g3 0 0 0 0 0 0 0
0 0 g0 g1 g2 g3 0 0 0 0 0 0
0 0 0 g0 g1 g2 g3 0 0 0 0 0
0 0 0 0 g0 g1 g2 g3 0 0 0 0
0 0 0 0 0 g0 g1 g2 g3 0 0 0
0 0 0 0 0 0 g0 g1 g2 g3 0 0
0 0 0 0 0 0 0 g0 g1 g2 g3 0
0 0 0 0 0 0 0 0 g0 g1 g2 g3


=

=



1 1 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0
0 0 1 1 0 1 0 0 0 0 0 0
0 0 0 1 1 0 1 0 0 0 0 0
0 0 0 0 1 1 0 1 0 0 0 0
0 0 0 0 0 1 1 0 1 0 0 0
0 0 0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 0 0 0 1 1 0 1


and parity check matrix for the code is

H =



h9 0 1
h8 h9 0
h7 h8 h9
h6 h7 h8
h5 h6 h7
h4 h5 h6
h3 h4 h5
h2 h3 h4
h1 h2 h3
h0 h1 h2
0 h0 h1
0 0 h0



=



1 0 1
1 1 0
1 1 1
0 1 1
0 0 1
1 0 0
0 1 0
1 0 1
1 1 0
1 1 1
0 1 1
0 0 1


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Similarly to part 1, it must be satisfied that G ·H = 0 and can be checked by ensuring
that x0,12 = 0. Note for this example, the 1 has been placed in the (n − k)th = 3rd

position of the first row of H. The calculation of x0,12 is taken to be

g0 · 1 + g1 · 0 + g2h9 + g3h8 + 0 · h7 + 0 · h6 + 0 · h5 + 0 · h4 + 0 · h3 + 0 · h2 + 0 · h1 + 0 · h0

= g0 · 1 + g2h9 + g3h8

By the theorem, it is clear that g2h9 + g3h8 is the coefficient of x11 and thus equal to
1. Since g0 = 1, x0,12 = 1 + 1 = 0 and therefore the required property for this code is
satisfied.

5.1 Comparing cyclic codes and codes generated by xn+xn−1+1
The table below shows the corresponding polynomials for the cyclic codes of length n up to
length n = 19 and the factorization in the ring F2[x].

Degree Polynomial Factors
1 x + 1 (x + 1)
3 x3 + 1 (x + 1) · (x2 + x + 1)
5 x5 + 1 (x + 1) · (x4 + x3 + x2 + x + 1)
7 x7 + 1 (x + 1) · (x3 + x + 1) · (x3 + x2 + 1)
9 x9 + 1 (x + 1) · (x2 + x + 1) · (x6 + x3 + 1)

11 x11 + 1 (x + 1) · (x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1)
13 x13 + 1 (x + 1) · (x12 + x11 + x10 + x9 + x8 + x7 + x6 +

+x5 + x4 + x3 + x2 + x + 1)
15 x15 + 1 (x + 1) · (x2 + x + 1) · (x4 + x + 1) ·

·(x4 + x3 + 1) · (x4 + x3 + x2 + x + 1)
17 x17 + 1 (x + 1) · (x8 + x5 + x4 + x3 + 1) · (x8 + x7 + x6 + x4 + x2 + x + 1)
19 x19 + 1 (x + 1) · (x18 + x17 + x16 + x15 + x14 + x13 + x12 +

+x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1)

Note that there are no cyclic codes of even length listed. When n is even, codes of the form
xn+1 always have repeated roots in their factorization and because this repeated factor causes
difficulties in not only encoding and decoding, but also error correcting, these factorizations
have been omitted. However, it is clear after examining the codes generated by xn + xn−1 + 1
below that cases in which n is even, the factorizations do not produce a repeated root and
can thus be utilized for error correcting purposes.
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The table below shows the corresponding polynomials for the family of codes based on
xn + xn−1 + 1 of length n up to length n = 19 and the factorization in the ring F2[x].

Degree Polynomial Factors
2 x2 + x + 1 (x2 + x + 1)
3 x3 + x2 + 1 (x3 + x2 + 1)
4 x4 + x3 + 1 (x4 + x3 + 1)
5 x5 + x4 + 1 (x2 + x + 1) · (x3 + x + 1)
6 x6 + x5 + 1 (x6 + x5 + 1)
7 x7 + x6 + 1 (x7 + x6 + 1)
8 x8 + x7 + 1 (x2 + x + 1) · (x6 + x4 + x3 + x + 1)
9 x9 + x8 + 1 (x9 + x8 + 1)

10 x10 + x9 + 1 (x3 + x2 + 1) · (x7 + x4 + x3 + x2 + 1)
11 x11 + x10 + 1 (x2 + x + 1) · (x9 + x7 + x6 + x4 + x3 + x + 1)
12 x12 + x11 + 1 (x3 + x + 1) · (x4 + x + 1) · (x5 + x4 + x3 + x2 + 1)
13 x13 + x12 + 1 (x5 + x4 + x2 + x + 1) · (x8 + x5 + x3 + x + 1)
14 x14 + x13 + 1 (x2 + x + 1) · (x5 + x2 + 1) · (x7 + x5 + x2 + x + 1)
15 x15 + x14 + 1 (x15 + x14 + 1)
16 x16 + x15 + 1 (x8 + x5 + x3 + x2 + 1) · (x8 + x7 + x5 + x4 + x3 + x2 + 1)
17 x17 + x16 + 1 (x2 + x + 1) ·

·(x3 + x2 + 1) · (x12 + x11 + x8 + x6 + x4 + x3 + x2 + x + 1)
18 x18 + x17 + 1 (x5 + x3 + 1) · (x13 + x12 + x11 + x10 + x9 + x6 + x5 + x3 + 1)
19 x19 + x18 + 1 (x3 + x + 1) · (x4 + x3 + 1) · (x5 + x4 + x3 + x + 1) ·

·(x7 + x6 + x5 + x4 + x3 + x2 + 1)
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Example 19. Let n = 5 for both xn + 1 and xn + xn−1 + 1 in order to compare the different
codes produced.

1. Consider the polynomial x5 + 1 = (x + 1)(x4 + x3 + x2 + x + 1).
The cyclic code C with generating polynomial g(x) = 1 + 1 · x and check polynomial
h(x) = 1 · x4 + 1 · x3 + 1 · x2 + 1 · x + 1 has the following generating matrix G and check
matrix H

G ·H =


1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1

 ·


1
1
1
1
1

 =


0
0
0
0


Looking at the codewords of G and its combinations, the minimum distance oc C is
d(C) = 2.

2. Consider the polynomial x5 + x4 + 1 = (x2 + x + 1)(x3 + x + 1).
The code C with generating polynomial g(x) = 1 + 1 · x + 1 · x3 and check polynomial
h(x) = 1 · x2 + 1 · x + 1 has the following generating matrix G and check matrix H

G ·H =
[
1 1 0 1 0
0 1 1 0 1

]
·


1 0 1
1 1 0
1 1 1
0 1 1
0 0 1

 =
[
0 0 0
0 0 0

]

Looking at the codewords of G and its linear combinations, the minimum distance of C
is d(C) = 3.

6 Future Research
For the codes based on these polynomials, great progress has been made in regards to their
construction and properties. After observing the construction for the cyclic codes corre-
sponding to xn + 1, a similar construction was made for the family of codes corresponding to
xn + xn−1 + 1. Using this new polynomial, we were able to find a method to determine if any
errors were made by constructing their check matrix. However, there is still much to done.
For each specific case of these codes, the minimum distance can be calculated. What still
remains to be found though is a general formula for minimum distance for all codes of these
forms. Knowing the minimum distance is critical in order to determine how many errors can
be corrected. Once the minimum distance is determined, a method to correct errors remains
to be found. We did not address this problem.

7 Conclusion
While the concept of Error Correcting Codes has been around for over half a century, the
foundational properties and structures have been used to create new codes with new possibil-
ities. They all serve the same purpose - to deliver messages in a secure, efficient and reliable
manner. The structure of these codes is designed to transmit the original message in the most
accurate way possible while still keeping its confidentiality. To make these codes reliable, al-
gebraic computations are performed to add indicators in the case of an error occurring, as
well as including the correction tools that are necessary.
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By using the polynomial xn + 1 to create a cyclic code, messages are sent in a reliable and
secure method. Developing upon this, polynomials of new forms can be used to create codes
in a similar way but allowing for a variety of new codes. Now, an error detection method has
been discovered for the family of codes corresponding to xn + xn−1 + 1. To correct the errors
and thus further the functionality of these codes constructed the parity check matrix. The
construction of the parity matrix is the main contribution of our work.
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