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Abstract 

Conservation efforts of large mammal species in Costa Rica rely on extensive camera 

tracking networks to record these species’ presence, activity, and interactions. By using transfer 

learning on an edge device to retrain a Convolutional Neural Network the process of tracking 

and identifying these mammals will be streamlined. Transfer learning on edge devices was found 

to be effective in retraining and deploying CNN image classifiers. 
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Introduction 

Why: 

Costa Rica is one of the most biodiverse countries in the world. By providing the Costa 

Rican government with reliable and extensive data on their native wildlife’s presence, activity, 

and interactions, more effective conservation efforts can be enacted. Dr. Mooring from Point 

Loma Nazarene University, with assistance from Dr. Botts and PLNU summer researchers, is in 

the process of enacting this research, using extensive camera tracking networks to record data on 

large mammals in the Costa Rican Jungle. The current process for properly tagging the collected 

images is painstaking and inefficient: researchers must search the images and identify the species 

manually, resulting in many different formats for how these pictures are tagged, misidentified 

images, and inconsistent storing of images. Additionally, the images must be stored on the 

camera’s hard drives because transmitting those from Costa Rica to San Diego is not feasible. 

This means that the research team must travel down to Costa Rica to retrieve the data by hand, 

before it can be labelled and analyzed.  

These problems are not just limited to PLNU’s research team, but apply to other camera 

trap studies as well. Memory limitations from storing a large number of detailed photos are 

common, and require many hours to maintain cameras and swap out memory cards. 

Additionally, once images are actually captured and put into the hands of the researchers, many 

man-hours are needed to identify and organize the animals by species. 

 

How: 

Edge devices are low-powered Central Processing Units (CPU) built for specific 

computational tasks. The edge device chosen for our research was a Raspberry Pi, similar to 

most edge devices in that it is a small computer that can be deployed easily, providing a low-
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power processor in areas that need a smaller piece of hardware. Raspberry Pi’s are also able to 

integrate cameras into their systems, which can be purchased online easily and cheaply, with 

options for different lenses and IR image capturing as well. Edge devices have been shown to be 

an effective way to minimize the amount of unnecessarily stored data through filtering out 

unneeded data by using edge computation (Long et al.). Alternatively, in Wang et al. they were 

used to store only local data that would be deleted once decisions were made by the machine 

learning system, effectively minimizing stored data as well. Thus, we propose that the use of 

edge devices may be a feasible approach for limiting the amount of data recorded in the field. 

Machine learning is a data analytics method centered around automating analytical model 

building. Additionally, “it is a branch of artificial intelligence based on the idea that systems can 

learn from data, identify patterns, and make decisions with minimal human intervention” 

(“Machine Learning: What it is and why it matters”). One of machine learning’s applications is 

in image classification, where analytical models are developed to analyze and identify images. 

Afkham et al. used machine learning image classification on “realistic images of animals in 

complex natural environments,” showing that image classification algorithms can be applied to 

identify wildlife in nature. By using classification algorithms to identify wildlife species, we can 

streamline the process by eliminating the need for every image to be classified manually by 

researchers. 

One of the many machine learning algorithms is a Convolutional Neural Network (CNN). 

CNN’s differ from other algorithms in their architecture: CNN’s use a series of layers that 

perform mathematical calculations on the input (an image) and result in a calculated label for 

that image. These layers alternate between Convolution and Pooling layers—explained later in 

Methodology: Convolutional Neural Networks. The underlying commonality between CNN’s is 

their architecture and the fact that they “have been proven very effective in areas such as image 
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recognition and classification” (Ujjwalkarn). However, CNN’s can be applied to many different 

use cases in Image Recognition. For instance, Cao et al. used CNN’s to perform Marine Animal 

Classification and Lawrence et al. applied a CNN for human facial recognition. We propose the 

use of machine learning image classification and a CNN to identify and label the images of Costa 

Rican wildlife acquired in the field. 

One method of developing and testing machine learning models is transfer learning. In 

transfer learning, instead of building a model from scratch on a very specific dataset, pre-

developed models made for a different, but similar, task are ‘retrained’ on the new dataset. Shao 

et al. describe this well by writing “Transfer Learning addresses such cross-domain learning 

problems by extracting useful information from data in a related domain and transferring them 

for being used in target tasks.” For identifying mammals, this could mean using models 

developed for mammals in a different habitat, or even for general animal classification. Thus, we 

propose the application of transfer learning to maximize efficiency in the development and 

deployment of our CNN’s. 

 Using an edge device represents both a possible obstacle, as well as key advantage to 

solving this problem. Edge devices, such as a Raspberry Pi, are very low-power devices, and do 

not have advanced Graphics Processing Units (GPUs). GPUs are specifically designed to aid in 

the graphics of a computer by displaying or changing the Red/Green/Blue color counts of each 

pixel. This RGB per pixel structure results in a 3-Dimensional Matrix (3 values per pixel). 

Similarly, Neural Networks (including CNNs) possess a similar matrix structure; although the 

dimensions can go much higher than just 3. Due to this, GPUs turn out to be highly effective at 

training and deploying Neural Networks. As the edge device is a key component of our proposed 

research, and it lacking a GPU represents a large problem. Fortunately, Google and other 

companies have developed what they call a TPU—Tensor Processing Unit—designed to do 



Cole 7 

 

exactly what we are trying to accomplish: “The TPU is a coprocessor optimized for handling 

neural networks, intended to push artificial intelligence out from the centralized clouds to 

embedded devices” (Cass par. 4). We propose the use of a TPU configure on an edge device to 

assist in the transfer learning process and deployment of our CNN.   

 

Our desired project outcomes are as follows: 

1. Build and configure a low-powered edge device with the ability to acquire images and 

apply machine learning image classification techniques, resulting in a much lower data 

footprint. 

2. Perform transfer learning on a pre-trained CNN to adapt it for this data. 

3. Assess the performance of the pre-trained CNN for image classification on this device. 

 

Determining Success: 

First, the edge device and associated hardware need to work independently. In order for 

this project to successfully deploy a model on edge, the edge device needs to work 

independently; without it, the model will have to be deployed locally and the data will still have 

to be retrieved manually.  

Second, the edge devices involved must successfully execute transfer learning on a CNN. 

The process of transfer learning does not need to be done on an edge device; the CNN could be 

retrained on a larger machine and then the best model could be stored on the edge device. 

However, we would like to also demonstrate that the transfer learning process could be 

efficiently done on an edge device with the aid of a TPU. Failure to retrain on the edge device 

would not result in project failure but being able to do so would provide a valuable 

demonstration for the abilities of TPUs.  



Cole 8 

 

Finally, the project should develop a model that can confidently take in new images and 

label them accurately. The model does not need a 100% success rate, few deployed in real life 

have that kind of threshold. It does need to be able to identify a large percent of images 

accurately and provide metrics on which species are harder for it to identify. Providing the 

researchers with which species typically get confused will allow them to highlight those species 

and label them manually, still saving time by limiting the number of images that need labelling 

from the researchers. 

 

Methodology 

Hardware: 

 A Basic Starter Kit from Vilros was purchased, containing a Raspberry Pi Project Board, 

compact case, power supply, and heat sink. The Raspberry Pi Project Board was comprised of a 

Raspberry Pi 3 Model B Rev 1.2, which I embedded in the transparent compact case. The 

Raspberry Pi has an ARMv7 rev 4 Processor and a CPU Revision 4. The heat sink was also 

attached to the Raspberry Pi, which helps with overheating by directing the flow of heat through 

the heat sink and into the air, rather than dispersing it on the Raspberry Pi board itself. 

 A 128GB Micro SD card and an SD Card adapter were also used to install Raspbian, the 

standard operating system for a Raspberry Pi. This process involves formatting the card, 

downloading NOOBS (New out of the box software)—Raspberry Pi’s official installer for 

Raspbian, inserting the Micro SD Card into the Raspberry Pi and allowing the installer to 

perform the installation process automatically. 

 A Raspberry Pi Remote Camera module was also purchased to integrate into the 

Raspberry Pi 3The process of setting up these remote cameras is also well documented online: 

https://thepihut.com/blogs/raspberry-pi-tutorials/16021420-how-to-install-use-the-raspberry-pi-
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camera. 

 A remote 1TB Hard Drive was also used to store all the data and plug it into the 

Raspberry Pi, as opposed to trying to store it all on the Raspberry Pi itself. This has no impact of 

the successfulness of the edge device or transfer learning; the data simply needs to be present in 

some fashion on the Raspberry Pi to prove that transfer learning can be done on an edge device. 

In application, once the model is trained, the storage device no longer needs to be attached to the 

Raspberry Pi, as storing old data is not needed. 

The final piece of hardware incorporated into this system was the TPU. A USB Accelerator 

TPU from Coral was purchased. The TPU allows for a Raspberry Pi to efficiently conduct 

machine learning processes, without the TPU, the Raspberry Pi would not be able to train, 

retrain, or deploy Machine Learning (ML) models. This has to do with the structure of a ML 

model, explained more below in Software. For now, the ML model structure can be compared to 

Red-Green-Blue counts for the colors of pixels. In this example, each pixel can be considered to 

be on an XY plane (flat). The Red, Green, and Blue counts are stacked upon the XY plane in the 

Z-axis, thus providing a third dimension to each pixel and forming a matrix. This can be 

visualized below in the 6-by-6-by-3 RGB matrix. The Raspberry Pi itself is a CPU, built to do a 

wide range of tasks, and thus is not capable of performing matrix operations efficiently on its 

own. However, GPUs are designed specifically to perform matrix operations well, 

supplementing the CPU. TPUs can be considered to be further optimized, small scale GPUs, 

designed specifically for ML model computations. Since CNN’s require millions of such 

calculations, and we are doing this on a low-powered device, the specialized hardware of the 

TPU is required for efficient implementation. 
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Figure 1: A 3D matrix of colored pixels 

(Prabhu) 

 

 

 

 

 

 

Data: 

The data we are analyzing is composed of 15 different species, each organized into 

separate folders: Agouti, Coati, Cottontail, Coyote, Dog, Jaguar, Margay, Ocelot, Oncilla, Paca, 

Peccary, Puma, Tamandua, Tapir, and Tayra. These simplified folder names allow the retraining 

program to automatically grab the labels from each of these folders. There is a total of 

approximately 26,000 files with a combined size of 24 GB. The images were taken both by 

infrared cameras at night and normal cameras during the day (figures 2a & 2b).  

Figure 2a: Night 

Capture of Ocelots   
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Figure 2b: Daytime 

Capture of Peccary 

 

 

 

 

 

 

 

 

The data we are using has already been labelled and organized by the researchers. This 

makes our problem a Supervised Learning problem. This means that our data is already given 

labels and our model tries to learn from those pre-determined labels, rather than working with 

unlabeled data. For our problem, it is important to take the data labels given to the images as 

perfectly true, as Supervised Learning algorithms take in the labels and sets them as our ground 

truth. The ground truth is the model’s way of saying that all these predetermined labels are 

considered to be 100% accurate, and thus is the entire basis for which our model retrains, learns, 

and classifies. However, over the course of this project we found that the labels provided were 

not 100% accurate, resulting in a false ground truth for our model’s retraining. Likely this error 

is due to how the files were stored and captured, not directly due to mislabeling by humans. 

There are a couple ways that the current data is mislabeled, which will affect the 

performance of the transfer learning and CNN. The first involves images that do not actually 

contain the animal they were labelled as. For instance, in Figure 3a. we can see an Agouti—the 

small rodent-like animal in the right corner—along with some deer. In Figure 3b, we have a 
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photo captured directly after that one. In this photo however, the Agouti is nowhere to be seen, 

all we have left are the deer. The first photo is quite valuable, as we can not only see the species 

in question, but also the other animals it is interacting with. The second photo, however, is 

detrimental to the retraining of our CNN because its learning is based off of that photo 

containing an Agouti. 

Figure 3a: An Agouti 

and some deer 

 

 

 

 

 

 

Figure 3b: A deer 

labelled as “Agouti,” 

with no Agouti in 

frame 
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The other mistake involves images that do not actually have the species in frame. This 

typically occurs when an animal is on the edge of the frame in the previous picture. The way the 

cameras are set up involves photos being taken in bursts of 3. When labelling, the series of 3 

images is frequently classified by researchers as whatever species appeared in one of the frames 

An example of this can be seen below, where in Figure 4a, a Puma is just exiting the frame and 

triggers the motion sensor, resulting in Figure 4b where no animal is actually present in frame. 

Figure 4a: Puma on 

right side of frame 

  

 

 

 

 

 

 

 

Figure 4b: No animal 

in frame 
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All of these shortcomings in the data have the potential to disrupt the transfer learning 

process, as the CNN will attempt to find patterns or associations within the bad data as well. 

Thoroughly and properly cleaning the data would provide great assistance to the model, allowing 

it to make accurate and reliable decisions/predictions on clean data. Unfortunately, this was not 

possible in the time of this project, resulting in reduced training accuracy for the CNN. A future 

step for the continuation of this project would involve cleaning the data first, then enacting the 

same procedures explained in this paper. 

 

Software: 

 The Raspberry Pi was deployed with a final Raspbian version of Version ID 10, 

codenamed “Buster”, and a final Debian version of 10.2. Debian is also known as Debian 

GNU/Linux, and is a universal, open-source operating system.  

 Python3 was installed on the Raspberry Pi, with a final version of 3.7.3. The 3.7.3 

version was used instead of Python2 versions because of the architecture of the retraining 

modules we used. 

 TensorFlow version 1.14.0 was installed and deployed on the Raspberry Pi as well. 

TensorFlow is a highly used Python module, developed specifically to assist in machine learning 

processes. Newer versions of TensorFlow are available, such as Tensorflow2.0, but many users 

are having issues with downloading V2.0 remotely, so it is recommended to stay on the older 

versions for now. 

 The Python module used was downloaded from GitHub from the Raspberry Pi’s 

command line. The module itself can be found at https://github.com/tensorflow/

hub/blob/master/examples/image_retraining/retrain.py where it also specifies all possible inputs 

and outputs for the code. This enables custom placement of the outputs such as a graph, logs, and 
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saved model, as well as changing parts of how the code executes (epochs, number of bottleneck 

files, which CNN to use, etc.). The retrain.py module found from the link above is technically 

deprecated in favor of newer modules that work on Tensorflow2. However, as previously 

mentioned, Tensorflow2 currently has issues with remote installation. 

 

Transfer Learning 

 A typical end-to-end machine learning project will develop a model from the ground up. 

This takes a large amount of time and technical expertise, as how the data is inputted, split, 

convoluted, and tested all have to be developed manually. Then features, distinct characteristics 

that can be used to define each category, have to be identified by the model and given specific 

values in accordance with how those features match each category. Transfer learning seeks to 

streamlines this process by taking a pretrained model and applying it to a new dataset. At its 

essence, transfer learning is “a machine learning technique where a model trained on one task is 

re-purposed on a second related task” (Brownlee par. 6). Transfer learning has been shown to 

increase the “success rate of training from scratch to 75% was increased to 98% with transfer 

learning” (Şeker par.1) when applied to a CNN. 

 These pretrained models are developed as general image classifiers. They already come 

with a set of features that can be used to identify images, and vary based on speed, accuracy, and 

size of dataset. For example, one of the pretrained models we are using, the Inception V3 model, 

is “highly accurate, but comparatively large and slow” (retrain.py). The other model we are 

using, the MobileNetV1, is specifically developed to “maximize accuracy while being mindful of 

restricted resources for an on-device or embedded application” (Google AI Blog). MobileNets 

have been deployed in classification problems with high success rates: Islam et al. claim to have 

“put forth a MobileNet model which gives an amazing accuracy of up to 100%” when 
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identifying local birds in Bangladesh, while Rabano et al. developed a MobileNet to classify 

common trash into different categories, with a final accuracy of 89.34% on their optimized 

model. Thus, we can see that not only have MobileNets been developed for our resource-limited 

problem, but have also experienced high degrees of success when applied to classification 

problems. 

 Transfer learning takes these predeveloped features and attempts to apply them to a new 

dataset. The same features that could be used to identify flowers such as certain colors, shapes, 

or sizes, can also be used to identify large mammals. Our brains work the same way as these 

models. When identifying a stool, we first notice the seat and the legs. Then, to distinguish the 

stool from a chair, we look at how long those legs are. However, a seat can apply to a whole 

range of objects: recliners, couches, car seat, etc. Similarly, a pretrained model has features that 

apply to some dataset, but these features can also be applied to entirely new problems. The 

transfer learning process involves changing the weights of those features, so that they can be 

used on the new datasets. The total architecture of CNN’s is explained later in Convolutional 

Neural Networks, but transfer learning alters the last layer of a CNN. This layer is referred to as 

the Softmax layer when in a multi-class classification problem, and is the layer that actually 

assigns a label to the input image (dshahid380). 

 

Convolutional Neural Networks (CNNs) 

 CNN image classifiers take in images as inputs, perform mathematical algorithms on 

them, and then classify the image as a category. For this project, the categories are defined by 

our image directories. CNNs will analyze both individual pixels and groups of pixels, looking for 

defining features. When using transfer learning, predetermined features are used, and their 

respective weighting and influence is changed to match the new dataset.  



Cole 17 

 

 A Neural Network is composed of many layers. Each one of these layers performs 

mathematical operations, based on what the previous layers passed in. The layers are comprised 

of a series of nodes, each of which is given an input, performs calculations, and then feeds an 

output to the next layer, which can be seen in figure 5. The first layer, the convolutional layer, 

extracts features from the image. It does this by convoluting the images, looking for edges, 

sharpening, and blurring the image. Convoluting the images involves taking regions of pixels 

and averaging their values. Doing this simplifies the image by reducing the total number of 

pixels in the image. This helps the model extract features from the image through these 

computations. The values gained from the presence or absence of these features is then passed 

into a pooling field, where all the varying weights from each of the nodes from the convolutional 

layer are accumulated. Then, these pooled values get pushed back through another convolutional 

layer. This process repeats multiple times, until the outputs get flattened and fed into a series of 

fully connected layers that, in turn, feed values to the output layer, which classifies the image in 

question as one of our possible categories. This can be visualized in figure 6. The entire first half 

of this process, the convolutional layers and pooling, is referred to as Feature Learning. The 

latter half: flattening, fully connected layer, and image classification, is referred to as 

Classification.  
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Figure 5: Example of node-structure of a CNN, where the Red Layer is the Softmax Layer 

(Prabhu) 

Figure 6: Visualization of layers of a CNN (Prabhu) 

 

The process we are deploying is defined as Supervised Learning. This means that our labels 

are already known, so that the model can verify whether its predictions are correct or not. We 

will be dividing the data into three groups: the training set, testing set, and validation set. The 

majority of the training/retraining is done on the training set, while the validation set is used to 

sanity-check the model while it is being trained. The testing set is used for a final check on how 

well the model performs. Each one of these sets is kept separate, so no leaking of information is 
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allowed. Additionally, the model runs through the data in epochs, splitting it into pieces so that 

the model can be incrementally sanity-checked and trained properly. Otherwise, it could make 

incorrect predictions on the whole dataset at once and be useless on the testing set. Typically, the 

data is split in an 8:1:1 fashion by the different sets. The accuracy of our retrained model will 

similarly be split by training, testing, and validation accuracies. In order to determine the overall 

accuracy of the model, I will calculate what I am going to call a Weighted Average. Here, since 

the training set possesses 8 times as much data as the validation and testing Sets, its accuracy 

will receive 8 times as much weight. For example, with an accuracy set of 80%:76%:82%, I 

would calculate my Weighted Average as: 

 [0.8*(8) + (0.76) + (0.82)] / 10 = 79.8% 

 The Cross-Entropy Loss Function is also important in evaluating the effectiveness of a 

CNN. The way an image is labelled involves taking the highest probability calculated from the 

different categories (Uniqtech). For example, if our Dog category has a probability of .92, our 

CNN is 92% confident that the image passed in is a Dog. The Cross-Entropy Loss Function 

measures the divergence between our predicted probabilities and actual labels. Higher cross-

entropy values indicate that the model is confident but wrong, indicating that it is apply its 

features incorrectly and misidentifying images. Lower values indicate that the model is not 

confident, showing that the model cannot differentiate between the categories well. Values closer 

to 0.5 indicate that the model is confident and correct, which is ideal (“A Gentle Introduction to 

Cross-Entropy for Machine Learning”). 

Another piece of training the CNN is the distortion of the images. In order to gain more 

data and value from the images we already have, we will perform different operations on those 

images. These operations include rotating the image, flipping it, cropping it randomly etc. This 

allows features to be reinforced further by providing more images to analyze from a limited 
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dataset.  

Figure 7: An image of a Jaguar flipped on the 

vertical axis, resulting in 2 images to analyze 

 

Results 

The Raspberry Pi was successfully deployed as an edge device. The installation of 

Raspbian and Debian was done successfully. The Coral Edge TPU was then successfully 

installed and tested, using guides from the Coral documentation. A remote camera was also 

integrated into the Raspberry Pi and used to capture a few images as a proof of concept (Fig. 8). 

The entire setup can be seen in Fig. 9. 
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Figure 8: 

Image 

Captured by 

Raspberry 

Pi Module of 

my living 

room in low 

light 

 

 

 

Figure 9: 

Hard drive 

on the left, 

Raspberry Pi 

with Camera 

in the 

middle, TPU 

on the right 
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After the initial setup of the edge device, transfer learning and a CNN were both 

successfully implemented on the same remote device. Downloading Python code directly from 

the TensorFlow Hub libraries on GitHub, saving them to the Raspberry Pi’s hard drive, and 

executing from the command line in Raspbian was done successfully. Tensorflow1.14.0 was also 

installed on the Raspberry Pi. Multiple different CNN models were downloaded off of the 

TensorFlow Hub as well, with an Inception V3 and MobileNetV1 being used in the transfer 

learning process. The InceptionV3 model was used because the retraining python code we used 

had that model as its default. It is also a slower, more powerful model, providing an alternative to 

the faster MobileNetV1 model. The MobileNetV1 model was used due to its design being 

specifically for low-powered, resource restricted devices. It is of note that all of the transfer 

learning was done on the low-power remote device. 

The retraining code used applies a cross-entropy loss function (defined in Methodology), 

automatically convolutes and distorts the images, and alters our Softmax layer. The 

MobileNetV1 model was deployed with 100 neuron layers and an image size of 224. Smaller 

image sizes result in less detail, but faster rates. Similarly, less neuron layers result in faster 

retraining rates, but lower accuracy. We deployed the maximum values taken by the python code 

for both of these values: 224 for image size and 100 for the number of layers.  

These two models were successfully and efficiently retrained on our edge device. The 

defaults were kept from the retrain.py code from GitHub, using a batch size of 100, as well as a 

validation percentage of 10 and a testing percentage of 10. Because of this, the accuracy 

measurements are split into three categories: training accuracy (accuracy on the training set), 

validation accuracy (accuracy on the validation set), and testing accuracy (accuracy on the 

testing set). The MobileNetV1 model was able to retrain in ~6 hours, with a final test accuracy of 

71.7%. Additional metrics from some of the last epochs include: training accuracy of 86%, 
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validation accuracy of 74%, and a cross-entropy of 0.639. This results in our weighted average—

where the training accuracy is considered to hold 8 times as much weight as the other two 

accuracies—of 83.4%. The Inception V3 model is considered slower and more accurate, and 

retrained in ~18 hours. Surprisingly, it actually had a lower final test accuracy of 70.8. 

Additionally, it had a final training accuracy of 78%, validation accuracy of 65%, and cross-

entropy of 0.725. With a weighted average of 75.9%, this means that the faster and less power-

intensive MobileNetV1 model actually performed better than the more-powerful, slower 

InceptionV3 model. The cross-entropy of 0.639 also points towards the MobileNetV1 being 

more confident in its predictions than the InceptionV3 counterpart. This proves that transfer 

learning can be done efficiently and effectively on a low-power edge device, with assistance 

from an Edge TPU. 

 

Issues: 

One of the largest problems came from the use of deprecated modules. Unfortunately, the 

new modules proved unreliable in their documentation and did not perform the way they claimed 

to. This has to do with what was previously mentioned in the Software section of the 

Methodology: Tensorflow2.0 cannot be downloaded remotely onto an edge device and many 

modules do not function properly. Additionally, at the 2020 New Year, TensorFlow displaced 

the older modules in favor of their newer ones. Previously, the module we were using had a 

whole tutorial/guide page, explaining how the Python module worked and how to modify it for 

my own purposes. Because that page was removed from existence, we were forced to use the 

limited documentation present in the actual downloadable form of the module on GitHub.  

These deprecated modules also prevented us from properly analyzing the retrained 

models. Certain pieces of the code have been completely replaced in the TensorFlow library, 
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with no reliable alternatives found after hours of searching. Thus, a few graphs cannot be saved 

properly due to the absence of specific TensorFlow modules within the Python code. It is 

notable, however, that this has absolutely no impact on the actual performance of the transfer 

learning on the CNN, just an impact on what tools are available to analyze the retraining deeper.   

Additionally, the data fed to the retraining module was not properly cleaned. We did not 

have the time nor expertise to sift through the thousands of images and remove the ones with 

misidentified species or without any species at all in them. We are confident that this had an 

impact on the performance of the transfer learning, and that if that data was cleaned in the future 

and the same processes that we have done were executed again, better and more accurate 

performance could be gotten out of these CNNs. 

Another problem that arose was from overheating of the Raspberry Pi. Even with the heat 

sink installed, if we ran the retraining module multiple times in a row, without giving the 

Raspberry Pi a break by turning it off for a period of time, the Raspberry Pi would crash during 

the transfer learning sequence. In reality, this would not be a major problem, as you would 

ideally only retrain a model once, instead of manipulating the parameters over and over again in 

a short amount of time. 

The last problem we encountered was the development of a confusion matrix. This would 

other researchers determine which species were commonly confused or misidentified by the 

CNNs, allowing for further customization/analysis. Unfortunately, the TensorFlow modules for 

creating and saving these confusion matrices could not be coaxed into working properly.  

 

Conclusion/Discussion 

 The question that drove this project—Can we use transfer learning to implement a CNN 

to do large mammal classification on an edge device? —was answered. An edge device with 
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machine learning capacities was deployed, a CNN deployed on that edge device was retrained on 

a new dataset using transfer learning, and the CNN was shown to be able to classify mammal 

images with below average confidence in comparison to other research projects. As previously 

mentioned under Transfer Learning in Methodology, Şeker managed to improve a model from 

75% to 98% and Rabano et al. obtained a final test accuracy of 89.34% in their image 

classification with a MobileNet. With a final testing accuracy of approximately 70-71% for both 

of our models, our pretrained networks performed less than ideally, however given the presence 

of incorrect labels in our dataset, this may not be a model limitation, but due to the data itself. 

 There is definitely room for improvement, especially with the actual classification part of 

the algorithm. Cleaning up the data, as mentioned in the Data part of Methodology, would 

greatly improve performance and accuracy. As evidenced by accuracies obtained by other 

research projects, the limitations on our model’s accuracy are not derived from the nature of the 

problem itself. Instead, these limitations are due to mislabelled data and nonfunctional modules. I 

believe that future researchers can produce a highly accurate CNN capable of tagging new 

images once the data is cleaned properly and modules are updated. Additionally, further analysis 

of the confusion matrix, output graphs, and TensorFlow Logs would allow the researchers to 

determine which species the model is confident at predicting. By providing researchers with this 

information, once the CNNs are actually deployed on new data, they could be adapted to tag any 

images from the less-confident species, prompting manual analyzation.  

 The limitations from both time and faulty data restricted the overall success of this 

project. However, although the final models may not have been as accurate as I would have 

liked, the main goals of this research were all satisfied: we successfully performed transfer 

learning on an edge device and retrained a CNN to classify large mammals in Costa Rica. 
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